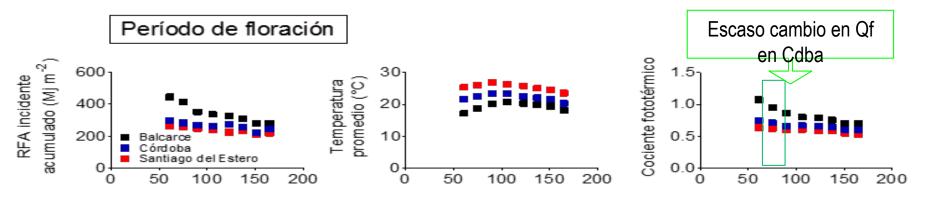


Progreso genético en maíz tardío y respuesta a la intensificación en el manejo

Claudia Vega Rosario, 10/10/2018

> Instituto Nacional de Tecnología Agropecuaria Centro Regional Córdoba **EEA Manfredi**

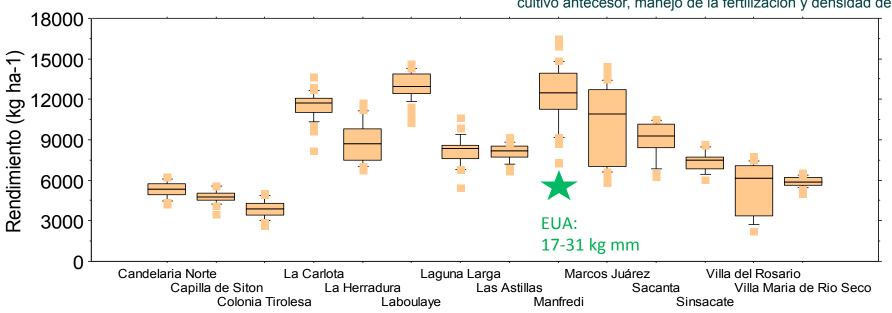


- Destacar aspectos que definen el rendimiento potencial y alcanzable del maíz cultivado en verano en el centro de Córdoba
- 2. Cuantificar la contribución del progreso genético en siembra tardía
- 3. Analizar interacciones entre prácticas de manejo en maíz tardío

Cambio en la calidad ambiental durante el período crítico ante atrasos de la fecha de siembra

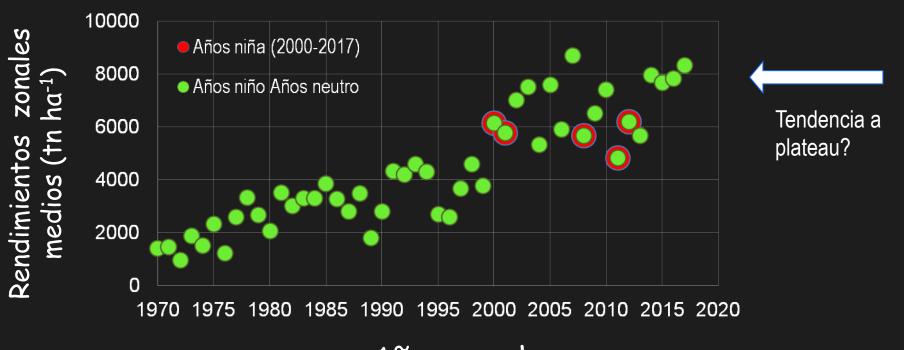
Fecha de ocurrencia de floración (días desde el 1^{ro} de octubre)

Vega y otros (2017)


Rendimientos potenciales y alcanzables en secano en siembras de diciembre en Córdoba centro

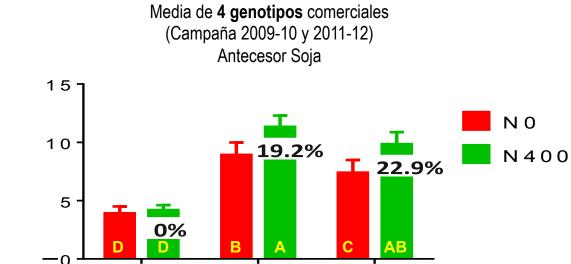
Campaña 2017-2018 Variabilidad de rendimientos alcanzados

Una gran variabilidad de prácticas de manejo involucradas, como fecha de siembra, cultivo antecesor, manejo de la fertilización y densidad de plantas.



Elaborado en base a fuentes INTA, CREA, empresas López y Col; Candela y Col; Vallone y Col; Ferreyra y Col; Molino y Col; Vega y Col

Evolución de rendimientos alcanzados en la región del centro de Córdoba (Colón, Tercero Arriba y Río Segundo)

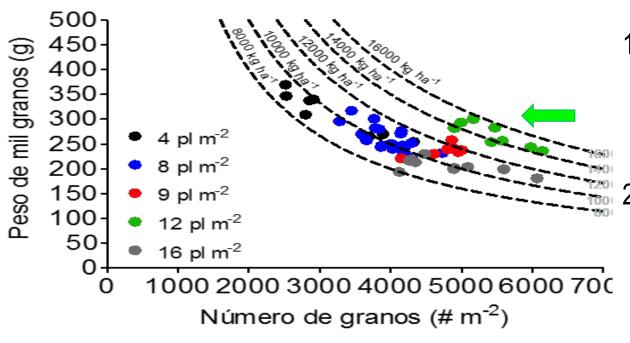

En base a Minagri (https:\\siia.gov.ar) 2018

Año cosecha

Estudios de interacciones Densidad*N; Manfredi, riego; FS 15 dic

9

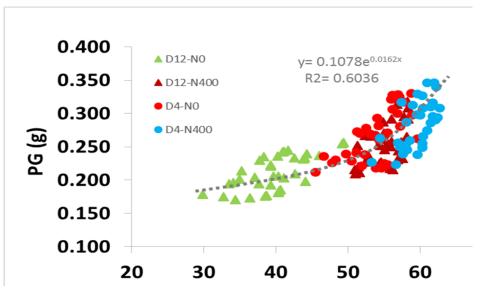
Densidad (p m⁻²)


2

Razquin (2018) Santillán Hatala, C (tesis UBA)

16

Rendimiento y componentes en maíces tardíos


Manfredi (experimentos sin limitantes nutricionales ni hídricas)

- Los híbridos difieren en la estrategia de generación del rendimiento
 - En general, existe una relación negativa entre el número y el peso de granos

Santillán Hatala, C (tesis UBA) Razquin, C (tesis UNC) Vega y otros (2017)

El peso de granos en maíz tardío responde al contenido de nitrógeno almacenado al inicio del llenado de granos

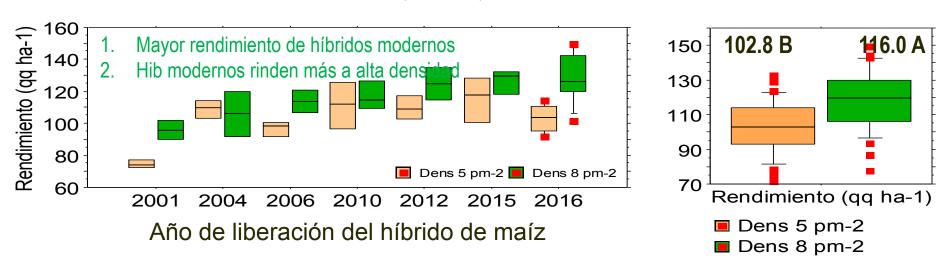
Nitrógeno en hoja de la espiga al inicio del llenado de granos

Santillán Hatala (Tesis Dr. UBA) Proyecto Brechas La Puerta, 2017

Híbridos modernos

- > Cambios en arquitectura de planta, ciclo, stay-green
- >Mayor eficiencia del uso de la radiación solar y tolerancia a las altas densidades (8.5-12 p m⁻², genotipo-dependiente)
- > Mayor susceptibilidad a estreses durante el llenado de granos debido a desbalances fuente-destino

Echarte y otros (2004), Razquin (2018), Santillán Hatala y otros (2017), Ogando y otros (2017), Amas y otros (2018)

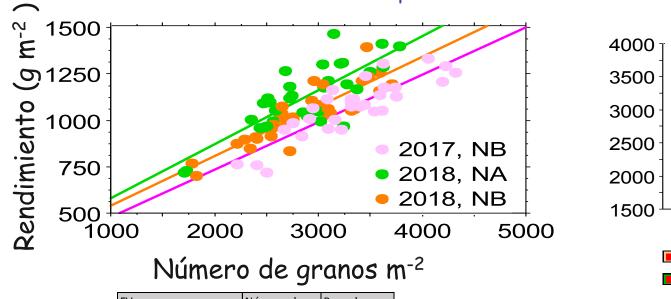

Contribución del progreso genético en siembra tardía

Variable	Valor	
Antecesor	Trigo secado en Z6 (Antesis)	
AU	60% CC - 180 mm	
N_disp a la siembra	77.28 kg N (41.3 + 36 min)	
N_ fertilización	T1: 220 y T2: 330 kg N ha-1 (inicial + fertilizante)	
Floración	13/02/2018	A STATE OF THE PROPERTY OF THE
Precipitaciones Siembra-mf	247 mm	
Total agua disponible	427 mm	

Genotipos modernos responden positivamente al aumento de la densidad

Exps campaña 2017-18 Manfredi, Córdoba

FV	Rendimiento
(Intercept)	<0.0001
NF	0.0002
Dens	0.0001
Año liberación G	0.0001
Interacciones	ns


Respuesta 12,6%

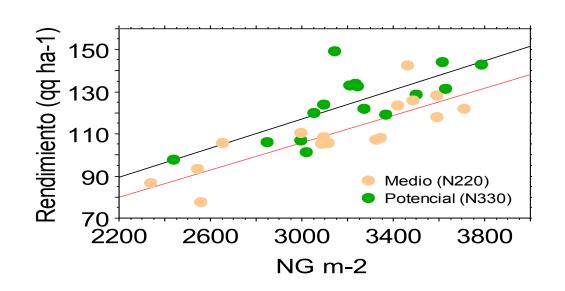
Proyecto Eras - experimentos 2017-2018 en Manfredi Uhart y otros (2018- AIANBA)

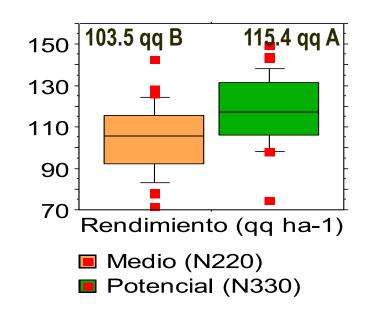
El número de granos fijados explica el incremento en el rendimiento en genotipos modernos

Respuesta a cambios en la calidad ambiental (N)

4000	2.515 B	3141 A
3500		-
3000		
2500		+
2000		
1500	nG	m-2
	■ Dens 5 pn	
	Dens 8 pn	N-2

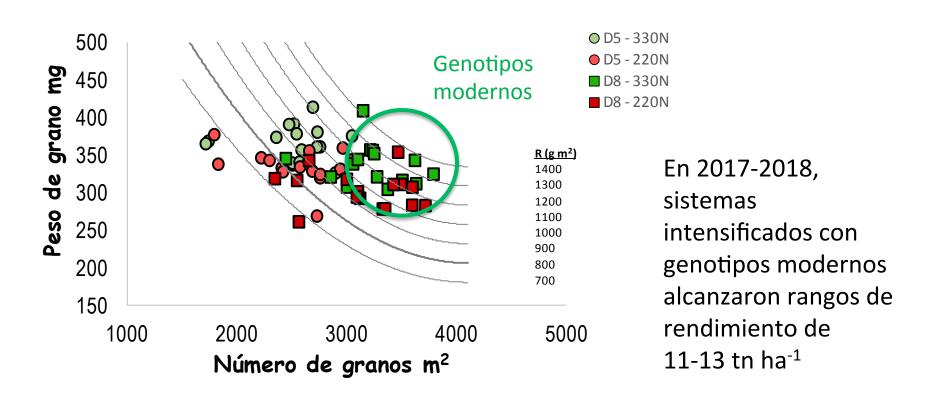
FV	Número de	Peso de	
	granos m ⁻²	granos (g)	
NF	0.3327	<0.0001	
Dens	<0.0001	<0.0001	
Año liberación G	<0.0001	0.0858	
Interacciones	ns	ns	


Respuesta 24.9%


Proyecto Eras - experimentos 2017-2018 en Manfredi (Uhart y otros, 2018)

Campaña 2017-18: crespuesta a la fertilización?

Exps 2017-18 Manfredi, Córdoba



Rta: 11.5%

Proyecto Eras - experimentos 2017-2018 en Manfredi (Uhart y otros, 2018)

Rendimiento y componentes en maíces tardíos Experimentos en secano, Manfredi, Proyecto Eras (2017-2018)

Tasas de progreso genético en siembras tardías

Nivel N	Ganancia genética (kg ha-1 año-1)	p value	R ²
Potencial	186.7± 47.8	0.0005	0.78
Moderado	154.8± 42.03	0.0009	0.77

Efecto de la densidad poblacional (dos niveles de N)

Densidad	Ganancia genética (kg ha-1 año-1)	p value	R ²
D5	138.3± 44.34	0.004	0.47
D8	203.2 ± 37.06	< 0.0001	0.94

- TPG levemente mayores a las reportadas en otros trabajos para FS tempranas y tardías bajo secano en la región pampeana
- Mejora de la respuesta en alta densidad

A través de todos los tratamientos

Ganancia genética p value R²

(kg ha-1 año-1)

Media 170.8±33.16 <0.0001 0.42

Proyecto Eras - experimentos 2017-2018 en Manfredi (Uhart y otros, 2018)

Agradecimientos

Federico Ogando, Francisco Raspa, Catriel Santillán Hatala

Sergio Uhart